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Silver Selectivity of Novel Monoazapolythioether Derivatives Bearing a Hydrazone Group
in the Solvent Extraction
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Novel acyclic and cyclic monoazapolythioether derivatives incorporating a
substituted hydrazone group were synthesized. The acyclic and the cyclic monoaza-
tetrathioether derivatives exhibited high Ag* ion selectivity in the extraction with 1,2-
dichloroethane. The monoazatetrathiocther derivatives gave hypsochromic and
bathochromic shifts in the visible absorption spectra when extracted Ag* ion from the
aqueous phase of varying acidities into the organic phase.

Silver-selective ionophores have been investigated with thioether derivatives as neutral carriers for ion-
selective electrodes,1:2) and extractants.34) The thioethers which have only sulfur atoms as coordination sites
also form complexes with the other transition metal ions, such as Ni2+, CuZ+» Cu*, Zn2+, Rh3+, Cd2+, P2+,
Co2*, Hg2+, etc.  To improve the selectivity of silver ionophores, some sulfur atoms of a thioether were
substituted for oxygen!14) and/or nitrogen atoms,>) and some compounds with a variety of structures6) were
synthesized. Much attempts have been made to gain the highly ion-selective chromogenic crown compounds
and to apply them to the determination of alkali metal ions.”-8)  Some silver-selective thiacrown ethers with a
chromophore, such as a picrylamino moiety, have also been presented.?) It is well-known that hydrazone
derivatives are a chromogen, exhibiting large bathochromic shifts of the absorption spectra caused by the
deprotonation on the imino group, as well as a chromogenic complexing agent for certain transition metal ions.
We have recently reported that oligoethylene glycol bis(hydrazone) derivatives exhibit high ion-selectivity and a
large bathochromic shift (about 70 nm) accompanied by a great change in the molar absorptivity in the copper (II)
ion extraction.10) The incorporation of a 6-trifluoromethyl-2,4-dinitrophenylhydrazone moiety into acyclic and
cyclic monoazapolythioether derivatives would lead to novel silver-selective chromoionophores.
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The reactions of 1,5-diiodo-3-phenyl-3-azapentane with ethylmercaptane or ethyl 2-mercaptoethyl sulfide
in the presence of Na metal in refluxing ethanol afforded the corresponding acyclic N-phenylmonoazapoly-
thioethers. The cyclic analogues were synthesized by the cyclization reaction of 1,5-diiodo-3-phenyl-3-aza-
pentane with 1,2-ethanedithiol or 3,6-dithia-1,8-octanedithiol in the presence of Cs2CO3 at 50-60 °C in DMF.
Acyclic and cyclic monoazapolythioether hydrazones, 1-4, were prepared by the formylation of the corre-
sponding N-phenylmonoazapolythioethers with POCI3 and DMF at room temperature, followed by the conden-
sation reaction with 6-trifluoromethyl-2,4-dinitrophenylhydrazine in the presence of acetic acid in refluxing
ethanol. These compounds were identified by the elemental analysis, infrared, 1H-NMR and mass spectro-
scopic methods. 1D

In a 50 ml stoppered centrifuge tube were placed a 1,2-dichloroethane solution of monoazapolythioether
derivative and an aqueous solution containing metal ion, and the mixture was shaken for 1 h at 25+ 0.2 °C.

The extraction behaviors of transition metal ions with the present thioether derivatives in 1,2-dichloroethane were
studies by spectrophotometry for an organic solution. Figure 1 shows the metal ion extraction behavior with
acyclic monoazatetrathioether 2 under the conditions where an aqueous solution contains a metal sulfate and is
kept at pH 6.0, the compound 2 being dissolved in 1,2-dichloroethane. The high extraction selectivity of 2 for
Ag* over Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+ and TI* is exhibited. The molar absorptivities of 2
and Ag+-2 complex are 2.4 x 104 mol-1 dm3 cm-1 at Amax = 439 nm and 3.9 x 104 mol-1 dm3 cm-1 at Apax =
500 nm, respectively. This extraction selectivity was supported by atomic absorption spectrometry applied to
the aqueous phase in the alternate extraction experiment, as shown in Table 1. The cyclic monoazatetrathioether
4 exhibited similar extraction selectivity. However, the Ag* extractability of 4 was less than that of the acyclic
one 2. This is probably because the sulfur atoms of the acyclic compound are able to provide preferable
circumstances to associate Ag* compared to those of the cyclic one when they form complexes with Ag™, since
the acyclic compound 2 has more flexible structure than the cyclic one 4. Extractabilities of the acyclic and the
cyclic monoazadithioethers, 1 and 3, for Ag* ion are decreased dramatically compared to those of monoaza-
tetrathioethers, due to poor cation-complexing abilities of the monoazadithioether moieties.

The extraction of Ag* with the acyclic monoazatetrathioether 2 was carried out under the different proton
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Fig.1. Spectral changes in the organic phase
in the extraction of verious metal ions with 2 at
25°C. Organic phase: [2]=2.0x 10-5 M in
1,2-dichloroethane. 12 ml; aqueous phase:
[metal ion] = 1.0 x 103 M using metal sulfate
atpH6.0.12ml. 1M =1 mol dm3.
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Table 1. Solvent extraction of metal ions with thioether derivatives?)
Extraction (%)

Compound
Mn<+t Co2*+ Ni2+ Cult Znit Agt Cd2+ Hg2+ T+
1 0 0 0 0 0 0 0 <5 0
2 0 0 0 2 1 84 0 <5 4
3 0 0 0 0 0 0 0 <5 0
4 0 0 0 4 2 30 0 <5 3

a) Extraction conditions: organic phase: [compound] = 1.0 x 104 M. 5ml; aqueous phase: [metal
ion] =2.0x 10° M using metal sulfates except for HgCl2 at pH 6.0. 5 ml. Metal ion in the aqueous
phase were determined by the atomic absorption spectrophotometory except for TI* and Hg2+ which
were detected by ICP-AES.
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Fig.2. Effects of pH in the aqueous solution on the
spectra in the organic phase in the extraction of Agt
with 2 at25°C. Organic phase: [2]=1.1x 10-
M in 1,2-dichloroethane. 12 ml; aqueous phase: 12
ml (a) without metal ion, (b) [AgNO3] = 2.0 x 10-4
M at pH 2.6, (c) [AgNO3] = 2.0 x 104 M at pH
7.1.
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concentrations (pH) in the aqueous solution containing AgNO3. The interesting spectral changes in the organic
solution are exhibited (Fig.2). In the extraction of Ag* from an acidic aqueous solution (below pH 4.0), a
hypsochromic shift, Amax = 400 nm, of the acyclic compound 2 in the visible region was observed in the organic
solution. On the other hand, the extraction from a neutral solution (pH 6.0-7.0) exhibited a bathochromic shift ,
Amax = 500 nm, in the extract. It is explained that the hypsochromic and the bathochromic shifts are attributed
to the formation of an ion-pair complex between a positively charged silver complex of the ligand and a NO3~ and
a complex between silver and the deprotonated form of the ligand, respectively. The bathochromic shifts are
generally observed in the complexation of metal ion with chromoionophore bearing the proton-dissociable anionic
chromophore.7)  The hypsochromic shift caused by complexation of 2 with Ag is similar to the spectral
characteristics of donor-acceptor-type chromoionophores such as N—(4—nitrophenylazo)phenyl-aza—18-crown-6.8)
The cyclic compound 4 exhibited similar spectral changes as those of the acyclic one 2.

Further details of the investigation are in progress.
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